

Ultra High Density SiPMs for Challenging Radiation Environments

A. Heering, Y. Musienko*, R. Ruchti and M. Wayne (University of Notre Dame)

* On leave from INR RAS(Moscow)

Outline

- SiPM radiation damage
- SiPMs for the CMS HE Phase 1 Upgrade
- SiPM goals for the CMS HCAL Phase 2 Upgrade
- SiPM R&D for the CMS Phase 2 Upgrade
- Small cell size (5-12 um) FBK SiPMs
- Plans for future SiPM R&D

SiPM: radiation hardness

Radiation may cause:

- Fatal SiPMs damage (SiPMs can't be used after certain absorbed dose)
- Dark current and dark count increase (silicon ...)
- Change of the gain and PDE vs. voltage dependence (SiPMs blocking effects due to high electric field induced dark carriers generation-recombination rate)
- · Breakdown voltage change

High energy neutrons/protons produce silicon defects which cause an increase in dark count and leakage current in SiPMs:

$$I_d \sim \alpha^* \Phi^* V^* M^* k$$

 α – dark current damage constant [A/cm];

 Φ – particle flux [1/cm²];

V - silicon active volume [cm3]

M - SiPM gain

k - NIEL coefficient

 α_{Si} ~4*10⁻¹⁷ A*cm after 80 min annealing at T=60 C (measured at T=20 C)

CMS HE SiPMs

SiPMs with large dynamic range were developed by CMS HCAL SiPM group in cooperation with Hamamatsu (Japan)

Area: ~Ø2.8&3.3 mm

Cell pitch: 15 um

• PDE(500 nm, dVB=4 V): 35%

Gain (dVB=4.0 V): 330 000

ENF(dVB=4.0): ~1.2

Optical X-talk between cells: <20%

Cell recovery time: ~7 ns

HE SiPMs after neutron irradiation

For CMS HE (3000 fb⁻¹): neutron fluence ~1E11 n/cm². SiPM dark current will reach ~20 uA, and signal drop will be <5%.

At 5E12 n/cm² the SiPM dark current reaches ~1 mA (dVB=3.0V) and Gain*PDE drop is ~15%. Most of he signal reduction comes from cell blocking and self-heating effects due to very high dark current.

Goals for the Phase 2 Upgrade

For the CMS Phase 2 Upgrade SiPMs should operate with high PDE~10%, low dark current (<100 uA/mm²) and acceptable noise (to see MIP) after neutron fluence up to 1E15 n/cm². Solution:

- Cell size reduction (5-7 um cell pitch)
- Small cell recovery time (<5 ns)
- Low (-30 °C) temperature operation

SiPM irradiated up to 2.2*10¹⁴ n/cm²

First promising result: FBK SiPM (1 mm², 12 μ m cell pitch was irradiated with 62 MeV protons up to 2.2*10¹⁴ n /cm² (1 MeV equivalent).

We found:

- Increase of VB: ~0.5 V
- Drop of the amplitude (~2 times)
- Reduction of PDE (from 10% to 7.5 %)
- Increase of the current (up to ~1mA at dVB=1.5 V
- ENC(50 ns gate, dVB=1.5V)~75 e, rms

The main result is that SiPM survived this dose of irradiation and can be used as photon detector!

(A.Heering et al., NIM A824 (2016) 111)

Irradiated SiPM at low T=-20.6 °C

FBK 12 micron SiPM after 2.2E14 n/cm² at T=-20.6 °C:

- A factor of ~9 drop of the dark current
- Reduction of noise: ~3 times
- Signal response partially recovers

50%

40%

30%

Joint effort with FBK on UHD technology

Cell Size (um)

RGB-HD				
cell size (µm)	cells/mm²			
12	7000			
15	4500			
20	2500			
25	1600			
30	1100			
—				
4	<u></u>			
RGB-	UHD			
RGB-				
cell size (μm)	cells/mm²			
cell size (μm) 7.5	cells/mm² 20530			

FBK UHD Technology

Reduction of all the feature sizes

- Contacts
- Resistor

Reduction of the active-toborder distance (L) Circular active area (smaller cells)

- No corners (with lower field)
- Hexagonal cells arranged in honeycomb configuration

Lower R_a

For even faster recharge

Different layouts for best GF

Cell size (um)	Equivalent square cell (um)	Cell density (cells/mm²)	Fill Factor (L = 0.75 um)	Fill Factor (L = 1.25 um)
7.5	7	20530	57.1%	40.3%
10	9.3	11550	68.1%	54%
12.5	11.6	7400	74.5%	62.1%

L = 0.75 um

Layout of different microcells.

Cell size vs PDE

UHD SiPM spectral response

Average response to the laser pulse

500 MHz BW

UHD2: Much higher PDE with New Guard Ring

Optimized guard ring → higher PDE~25% for 7.5 um cell pitch SiPMs

Summary and future plans

Summary.

- Functionality of the UHD technology, with cells sizes of (less than 7.5 um, 10 um and 12.5 um) has been demonstrated.
- Very short recovery time constant: ~4 ns (7.5 and 10 um cells).
- Low gain: 30k / V (7.5 um cell), 43k / V (10 um) and 70k / V (12.5 um).
- High PDE, greater than 25% (7.5 um) and 40% (12.5 um).

Future plans.

- Optimization of guard ring structure to increase PDE and reduce gain of 5 um cell pitch SiPM
- Electric field engineering to reduce dark noise generation rate
- Radiation damage studies of different SiPM designs to understand and improve SiPM resistance to radiation
- Development of UV sensitive devices with small pixels
- Work supported in part by the National Science Foundation through the USCMS Upgrade and Operations Programs and the University of Notre Dame

Back-up: NIEL factor

